91 research outputs found

    Optimal design and operation of compact simulated moving bed processes for enantioseparations

    Get PDF
    Simulated moving bed (SMB) chromatography is attracting more and more attention since it is a powerful technique for complex separation tasks. Nowadays, more than 60% of preparative SMB units are installed in the pharmaceutical and in the food in- dustry [SDI, Preparative and Process Liquid Chromatography: The Future of Process Separations, International Strategic Directions, Los Angeles, USA, 2002. http://www. strategicdirections.com]. Chromatography is the method of choice in these ¯elds, be- cause often pharmaceuticals and ¯ne-chemicals have physico-chemical properties which di®er little from those of the by-products, and they may be thermally instable. In these cases, standard separation techniques as distillation and extraction are not applicable. The noteworthiness of preparative chromatography, particulary SMB process, as a sep- aration and puri¯cation process in the above mentioned industries has been increasing, due to its °exibility, energy e±ciency and higher product purity performance. Consequently, a new SMB paradigm is requested by the large number of potential small- scale applications of the SMB technology, which exploits the °exibility and versatility of the technology. In this new SMB paradigm, a number of possibilities for improving SMB performance through variation of parameters during a switching interval, are pushing the trend toward the use of units with smaller number of columns because less stationary phase is used and the setup is more economical. This is especially important for the phar- maceutical industry, where SMBs are seen as multipurpose units that can be applied to di®erent separations in all stages of the drug-development cycle. In order to reduce the experimental e®ort and accordingly the coast associated with the development of separation processes, simulation models are intensively used. One impor- tant aspect in this context refers to the determination of the adsorption isotherms in SMB chromatography, where separations are usually carried out under strongly nonlinear conditions in order to achieve higher productivities. The accurate determination of the competitive adsorption equilibrium of the enantiomeric species is thus of fundamental importance to allow computer-assisted optimization or process scale-up. Two major SMB operating problems are apparent at production scale: the assessment of product quality and the maintenance of long-term stable and controlled operation. Constraints regarding product purity, dictated by pharmaceutical and food regulatory organizations, have drastically increased the demand for product quality control. The strict imposed regulations are increasing the need for developing optically pure drugs.(...

    Changes in albumin-to-creatinine ratio at 12-month follow-up in patients undergoing renal denervation

    Get PDF
    Introduction: Sympathetic renal denervation (RDN) was developed as a treatment for the management of patients with resistant hypertension. This procedure may have a positive impact on hypertension-related target organ damage, particularly renal disease, but the evidence is still limited. Objective: To assess the impact of RDN on the albumin-to-creatinine ratio (ACR) at 12-month follow-up. Methods and Results: From a single-center prospective registry including 65 patients with resistant hypertension undergoing renal denervation, 31 patients with complete baseline and 12-month follow-up blood pressure (BP) measurements (both office and 24-h ambulatory blood pressure monitoring [ABPM]) and ACR were included in the present study. Mean age was 65±7 years, 52% were female, most (90%) had been diagnosed with hypertension for more than 10 years, 71% had type 2 diabetes and 33% had vascular disease in at least one territory. Mean estimated glomerular filtration rate was 73.6±25.1 ml/min/1.73 m2 and 15 patients (48%) had an ACR >30 mg/g. After 12 months, 22 patients were considered BP responders (73%). ACR decreased significantly from a median of 25.8 mg/g (interquartile range [IQR] 9.0-574.0 mg/g) to 14.8 mg/g (IQR 4.5-61.0 mg/g, p=0.007). When the results were split according to systolic BP responder status on ABPM, we found a significant reduction in responders (from 25.6 mg/g [IQR 8.7-382.8 mg/g] to 15.9 mg/g [IQR 4.4-55.0 mg/g], p=0.009), and a numerical decrease in the non-responder subgroup (from 165.0 mg/g [IQR 8.8-1423.5 mg/g] to 13.6 mg/dl [IQR 5.7-1417.0 mg/g], p=0.345). Conclusions: Besides significant reductions in blood pressure (both office and 24-h ABPM), renal denervation was associated with a significant reduction in ACR, a recognized marker of target organ damage.publishersversionpublishe

    Integration of stable ionic liquid-based nanofluids into polymer membranes. Part I: Membrane synthesis and characterization

    Get PDF
    In this work, polymeric membranes functionalized with ionic liquids (ILs) and exfoliated graphene nanoplatelets (xGnP) were developed and characterized. These membranes based on graphene ionanofluids (IoNFs) are promising materials for gas separation. The stability of the selected IoNFs in the polymer membranes was determined by thermogravimetric analysis (TGA). The morphology of membranes was characterized using scanning electron microscope (SEM) and interferometric optical profilometry (WLOP). SEM results evidence that upon the small addition of xGnP into the IL-dominated environment, the interaction between IL and xGnP facilitates the migration of xGnP to the surface, while suppressing the interaction between IL and Pebax®1657. Fourier transform infrared spectroscopy (FTIR) was also used to determine the polymer?IoNF interactions and the distribution of the IL in the polymer matrix. Finally, the thermodynamic properties and phase transitions (polymer-IoNF) of these functionalized membranes were studied using differential scanning calorimetry (DSC). This analysis showed a gradual decrease in the melting point of the polyamide (PA6) blocks with a decrease in the corresponding melting enthalpy and a complete disappearance of the crystallinity of the polyether (PEO) phase with increasing IL content. This evidences the high compatibility and good mixing of the polymer and the IoNFAuthors fully acknowledge the financial support received from Project KET4F-Gas-SOE2/P1/P0823, which is co-financed by the European Regional Development Fund within the framework of Interreg Sudoe Programme and project PID2019-105827RB-I00–Agencia Estatal de Investigación, Spain. F.P. acknowledges the postdoctoral fellowship (FJCI-2017-32884 Juan de la Cierva Formación) awarded by the Spanish Ministry of Science, Innovation and Universities. This work was also supported by the Associate Laboratory for Green Chemistry LAQV (financed by national funds from FCT/MCTES, UIDB/50006/2020)

    Impact of Renal Sympathetic Denervation on Left Ventricular Structure and Function at 1-Year Follow-Up

    Get PDF
    BACKGROUND: Catheter-based sympathetic renal denervation (RDN) is a recent therapeutic option for patients with resistant hypertension. However, the impact of RDN in left ventricular (LV) mass and function is not completely established. Our aim was to evaluate the effects of RDN on LV structure and function (systolic and diastolic) in patients with resistant hypertension (HTN). METHODS AND RESULTS: From a single centre prospective registry including 65 consecutive patients with resistant HTN submitted to RDN between July-2011 and April-2015, 31 patients with baseline and 1-year follow-up echocardiogram were included in this analysis. Mean age was 65 ± 7 years, 48% were males, 71% had type 2 diabetes. Most had hypertension lasting for more than 10 years (90%), and were being treated with a median number of 6 anti-hypertensive drugs, including 74% on spironolactone. At 1-year, there was a significant decrease both on office SBP (176 ± 24 to 149 ± 13 mmHg, p<0.001) and DBP (90 ± 14 to 79 ± 11 mmHg, p<0.001), and also in 24h ABPM SBP (150 ± 20 to 132 ± 14 mmhg, p<0.001) and DBP (83 ± 10 to 74 ± 9 mmHg, p<0.001). There was also a significant decrease in LV mass from 152 ± 32 to 136 ± 34 g/m(2) (p<0.001), an increase in LV end diastolic volume (93 ± 18 to 111 ± 27 mL, p = 0.004), an increase in LV ejection fraction (65 ± 9 to 68 ± 9%, p = 0.001) and mitral valve E deceleration time (225 ± 49 to 247 ± 51 ms, p = 0.015) at 1-year follow up. There were no significant changes in left atrium volume index or in the distribution of patients among the different left ventricle geometric patterns and diastolic function subgroups. CONCLUSIONS: In this single centre registry of patients with resistant hypertension, renal denervation was associated with significant reduction in both office and ABPM blood pressure and a significant decrease in left ventricle mass evaluated by transthoracic echocardiogram at 1 year follow-up.publishersversionpublishe

    A practical clinical score

    Get PDF
    Copyright © 2022 Sociedade Portuguesa de Cardiologia. Publicado por Elsevier España, S.L.U. All rights reserved.INTRODUCTION AND OBJECTIVES: Obstructive coronary artery disease (CAD) remains the most common etiology of heart failure with reduced ejection fraction (HFrEF). However, there is controversy whether invasive coronary angiography (ICA) should be used initially to exclude CAD in patients presenting with new-onset HFrEF of unknown etiology. Our study aimed to develop a clinical score to quantify the risk of obstructive CAD in these patients. METHODS: We performed a cross-sectional observational study of 452 consecutive patients presenting with new-onset HFrEF of unknown etiology undergoing elective ICA in one academic center, between January 2005 and December 2019. Independent predictors for obstructive CAD were identified. A risk score was developed using multivariate logistic regression of designated variables. The accuracy and discriminative power of the predictive model were assessed. RESULTS: A total of 109 patients (24.1%) presented obstructive CAD. Six independent predictors were identified and included in the score: male gender (2 points), diabetes (1 point), dyslipidemia (1 point), smoking (1 point), peripheral arterial disease (1 point), and regional wall motion abnormalities (3 points). Patients with a score ≤3 had less than 15% predicted probability of obstructive CAD. Our score showed good discriminative power (C-statistic 0.872; 95% CI 0.834-0.909: p<0.001) and calibration (p=0.333 from the goodness-of-fit test). CONCLUSIONS: A simple clinical score showed the ability to predict the risk of obstructive CAD in patients presenting with new-onset HFrEF of unknown etiology and may guide the clinician in selecting the most appropriate diagnostic modality for the assessment of obstructive CAD.proofepub_ahead_of_prin

    Data from Portuguese centers

    Get PDF
    © 2022 Sociedade Portuguesa de Cardiologia. Published by Elsevier España, S.L.U.INTRODUCTION: During the Covid-19 pandemic there has been a general belief that hospital admissions for non-infectious causes, especially cardiovascular disease, have fallen. OBJECTIVES: To assess the impact of the pandemic on admissions for ST-elevation myocardial infarction (STEMI) during the first pandemic wave. METHODS: We performed a multicenter retrospective analysis of consecutive patients presenting with STEMI in two Portuguese hospital centers in two sequential periods - P1 (March 1 to April 30) and P2 (May 1 to June 30). Patients' clinical data and hospital outcomes were compared between the two periods for the years 2017 to 2019 and for 2020. RESULTS: During P1 in 2020, a reduction in the number of STEMI patients was observed in comparison with previous years (26.0±4.2 vs. 16.5±4.9 cases per month; p=0.033), as well as an increase in the number of mechanical complications (0.0% vs. 3.0%; p=0.029). Percutaneous coronary interventions in the setting of failed thrombolysis were more frequent (1.9% vs. 9.1%; p=0.033). An overall trend for longer delays in key timings of STEMI care bundles was noted. Mortality was higher during P1 compared to previous years (1.9% vs. 12.1%; p=0.005). CONCLUSIONS: During the first Covid-19 wave fewer patients presented with STEMI at the catheterization laboratory for percutaneous coronary intervention. These patients presented more mechanical complications and higher mortality.proofepub_ahead_of_prin

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Large-scale and multipolar anisotropies of cosmic rays detected at the Pierre Auger Observatory with energies above 4 EeV

    Get PDF

    A search for ultra-high-energy photons at the Pierre Auger Observatory exploiting air-shower universality

    Get PDF
    The Pierre Auger Observatory is the most sensitive detector to primary photons with energies above ∼0.2 EeV. It measures extensive air showers using a hybrid technique that combines a fluorescence detector (FD) with a ground array of particle detectors (SD). The signatures of a photon-induced air shower are a larger atmospheric depth at the shower maximum (Xmax_{max}) and a steeper lateral distribution function, along with a lower number of muons with respect to the bulk of hadron-induced background. Using observables measured by the FD and SD, three photon searches in different energy bands are performed. In particular, between threshold energies of 1-10 EeV, a new analysis technique has been developed by combining the FD-based measurement of Xmax_{max} with the SD signal through a parameter related to its muon content, derived from the universality of the air showers. This technique has led to a better photon/hadron separation and, consequently, to a higher search sensitivity, resulting in a tighter upper limit than before. The outcome of this new analysis is presented here, along with previous results in the energy ranges below 1 EeV and above 10 EeV. From the data collected by the Pierre Auger Observatory in about 15 years of operation, the most stringent constraints on the fraction of photons in the cosmic flux are set over almost three decades in energy
    corecore